

Current Sensor

Model Number

CM2A 300 H00

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuits.

Features

- ♦ Closed loop (compensated) current sensor using the Hall Effect.
- ♦ Galvanic separation between primary and secondary.
- ♦ Insulating plastic case recognized according to UL 94-V0.
- ♦ Very good linearity.
- ♦ High accuracy.
- ♦ Very low offset drift over temperature.
- ♦ No insertion loss.
- ♦ Standards:
 - IEC 60664-1:2020
 - IEC 61800-5-1:2022
 - IEC 62109-1:2010

Applications

- ♦ AC variable speed and servo motor drives.
- ♦ Uninterruptible Power Supplies (UPS).
- ♦ Static converters for DC motor drives.
- ♦ Switch Mode Power Supplies (SMPS).
- ♦ Power supplies for welding applications.
- ♦ Battery management.
- ♦ Wind energy inverter.
- Test and detection devices.

Safety

This sensor must be used according to IEC 61800-5-1.

This sensor must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the following manufacture's operating instructions.

Caution, risk of electrical shock!

When operating the sensor, certain parts of the module can carry hazardous voltage (e.g., Primary busbar, power supply). Ignore this warning can lead to injury and/or cause serious damage.

This sensor is a built-in device, whose conducting parts must be inaccessible after installation. A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Absolute maximum ratings(not operating)

Parameter	Symbol	Unit	Value	
Supply voltage	V c	V	± 21	
Primary conductor temperature	<i>T</i> _B	$^{\circ}$	100	
ESD rating, Human Body Model (HBM)	V ESD	kV	4	

X Stresses above these ratings may cause permanent damage.

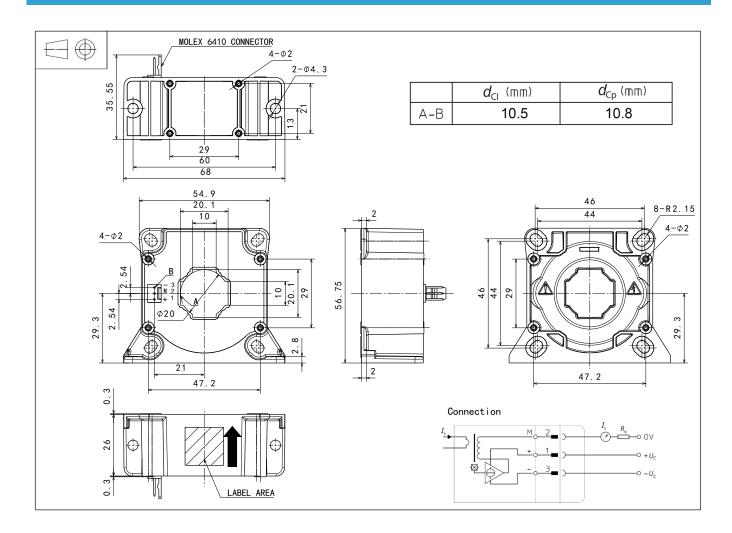
Environmental and mechanical characteristics

Parameter	Symbol	Unit	Min	Туре	Max	Comment
Ambient operating temperature	T _A	$^{\circ}$ C	-40		85	
Ambient storge temperature	<i>T</i> s	$^{\circ}$	-40		90	
Mass	m	g		120		

Insulation coordination

Parameter	Symbol	Unit	Value	Comment	
Rms voltage for AC insulation test @ 50Hz,1min	$V_{\rm d}$	kV	3.8	According to IEC 60664-1	
Impulse withstand voltage 1.2/50μs	K w	kV	8.1	According to IEC 60664-1	
Clearance (pri sec.)	д сі	mm	10.5		
Creepage distance (pri sec.)	d cp	mm	10.8		
Plastic case	-	-	UL94-V0		
Comparative traking index	СТІ	PLC	3		
Application example	-	-	500V	Reinforced insulation,according to IEC 61800-5-1, IEC 62109-1CATⅢ, PD2	
Application example	-	-	1000V	Basic insulation,according to IEC 61800-5-1, IEC 62109-1CATIII, PD2	

^{*} Exposure to absolute maximum ratings for extended periods may degrade reliability.


Electrical data

 \aleph With T_A = 25 °C, V_C = ±20V, R_M = 10Ω,unless otherwise noted.

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal rms current	/ PN	Α	-300		300	
Primary current, measuring range	/ РМ	Α	-500		500	
Measuring resistance	R™	Ω	0		35	@±12V, 85℃, ±300A
			0		6	@±12V, 85℃, ±500A
			0		54	@±15V, 85℃, ±300A
			0		17	@±15V, 85℃, ±500A
			0		85	@±20V, 85°C, ±300A
			0		36	@±20V, 85°C, ±500A
Secondary nominal rms current	/ _{SN}	mA	-150		150	
Secondary coil resistance	R s	Ω			27	@ 25 ℃
Decondary con resistance					35	@ 85℃
Secondary current, measuring range	<i>l</i> s	mA	-250		250	
Number of secondary turns	N s	-		2000		
Theoretical sensitivity	G th	mA/A		0.5		
Supply voltage	V c	٧	±12		±20	@ ±5%
Current consumption	<i>l</i> c	mA		25 + / s		
Zero offset current	<i>l</i> ₀	mA	-0.2		0.2	
Thermal drift of offset current	/ ot	mA	-0.3	±0.1	0.3	@ -40℃~85℃
Residual current@/ _P =0 after 3 × / _{PN}	/ ом	mA	-0.1		0.1	
Sensitivity error	$\mathcal{E}_{ extsf{G}}$	%	-0.2		0.2	Exclusive of I _{OE}
Linearity error 0I _{PN}	E ∟	% of Ipn	-0.1		0.1	Exclusive of I _{OE}
Accuracy@ I _{PN}	Х	% of I _{PN}	-0.3		0.3	Exclusive of I _{OE}
Response time@ 90% of I _{PN}	t r	μs		0.5	1	
Frequency bandwidth (-3dB)	BW	kHz	100			

Dimensions (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

♦ General tolerance ±0.3 mm

Primary hole Φ20mm or 20.1mm×10mm

Transduce vertical fastening 2pc Φ4.3 mm through-hole 2pc M4 metal screws

Recommended fastening torque 0.9 N•m (±10%)

Remarks

- I_S and I_P are in the same direction, when I_P flows in the direction of arrow.
- → Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time)are best with a single bar completely filling the primary hole.

This is a standard model. For different applications (measurement, secondary connections...), please contact CHIPSENSE.

♦ Connection of secondary

Molex 6410

♦ Transduce horizontal fastening

4рс Ф4.3 mm through-hole 4рс M4 metal screws

Recommended fastening torque

0.9 N·m (±10%)

Doc Ref.: 1800 000 00452 www.chipsense.net